初中数学课堂教学中情境创设策略摭谈
摘要
关键词
初中数学 课堂教学 情境 创设 策略
正文
2022版新数学课程标准中指出,现实生活是数学的源泉,数学问题是现实生活数学化的结果。有意义的学习一定要把数学内容放在真实的且有兴趣的情境中,让学生经历从生活问题的自然语言逐步抽象到数学问题。” 适宜的数学课堂情境可以提供丰富的学习材料和信息,有利于学生主动地探究和思考,因此,在数学教学中,我们要精心设计良好的问题情境,使学生由情如镜,情景交融,学习欲望高涨,从而使教学收到事半功倍的效果。那么,初中数学课堂怎样创设情境进行教学呢
一、联系生活实际,激发学生学习兴趣
“问渠哪得清如水,为有源头活水来”。生活本身就是课堂,如果知识能学以致用,学生就会感到知识的重要性,因而会更用功学习。所以,教师应从生活现象中,挖掘知识应用的素材,用学生非常熟悉的生活现象来创设情境,把日常生活的实例转化为课堂问题,引导学生思考,更有利于学生分析、思维等能力的培养和提高,也能更大程度地调动学生的学习兴趣。
例如:我在教学完《负数》一课时,设计了“精挑细选”的练习。出示数字25,+5,100,57.9,-5,-42.1,500,7,然后出示了一则数学小日记:“11月26日那天,我县天气预报最低气温( )度,最高气温( )度。晚上我和妈妈来到超市,买了一些生活用品。超市的账单上这样记的:应收( )元,实收()元,找钱( )元。回到家里,我发现水饺外包装上赫然写着,净含量500±5克。妈妈告诉我这表示水饺的净含量允许比( )克多5克,记作( )克或比( )克少5克,记作( )克。”学生一拿到这样的作业纸便觉得兴致勃勃,学习兴趣也迅速倍增,使他们真正体会数学来源于生活,用于生活。
二、运用教学用具,创设教学情境
初中学生对事物的认识是较为直观的,他们都希望是能一看就懂、一学就会的数学。然而,数学的教学往往不是那么直观的教学,而是一种抽象的逻辑思维和想象思维的演变、推理。因此,教师就应千方百计想方设法使数学直观起来,简化起来,精心设计其知识的呈现方式。例如:在教学“圆锥的侧面积”时,我事先做好了两个全等扇形,用其中一个围成圆锥的侧面,让学生观察发现扇形的弧长和半径与圆锥的底面圆周长和母线长之间有什么关系呢在教学人教版教材九年级下册第二十九章“投影与视图”中的“三视图”时,我事先让每个学生按规格叠好10个正方体,上课时,引导学生从不同方向看,得到不同的平面图形,帮助学生理解什么是主视图、左视图和俯视图后,让学生用透明胶带将自己制作的正方体选择几个粘合在一起,放在桌子上,然后从不同的方向看,体会其三视图的含义及画法,学生之间交叉使用,其次再用十合粉笔做演示,进一步观察体会最后再补充立体图形和它们的三视图之间的关系,学生通过直观地理解,从不同方向看,就会得到不同的平面图形。在教学三角形的稳定性和四边形的不稳定性时,通过演示三角形和四边形的模型的演示,学生直观地了解了相关知识,也就会很自然地理解一些如拉闸门为什么要用四边形而不用三角形的基本原理了。利用这种直观教学用具的演示,不但学生的兴趣被激活,纷纷投入到探索研究之中,而且在动手操作中,学生会发现连教师也无法预料的东西,正是通过动手实践、动脑自主探索与自主交流的学习方式获取了知识,对锻炼学生的操作能力,训练学生的观察能力和综合思维能力将起到很大的作用。
三、 创设动画情境,促进知识建构
兴趣是最好的老师,是学生发展思维的巨大动力,是促进学生乐学的先决条件。学生只有对所学的知识感兴趣,才能引起他们的注意,集中精力,积极思考,主动探究发现知识。如在教学时,可采用多媒体辅助教学来激发学习兴趣。利用图、形、声、像等媒体演示,让静止的物体动起来,使之变得新奇有趣。教学“直线、线段、射线”一课时,我用多媒体演示:先出示孙悟空手拿金箍棒画面,接着金箍棒向两端无限延长。然后提问:“像金箍棒一样向两端无限延长的线叫什么”由此引出直线。学生看到孙悟空一个个都瞪大了眼睛,脸上露出既兴奋又好奇的神情。孙悟空是学生最喜欢、最崇拜的人物,通过孙悟空手中变化的金箍棒,把金箍棒同直线联系起来,充分抓住学生的好奇心,吸引学生的注意,激发学生的兴趣,使学生迅速地进入最佳学习状态。
四、用故事创设情境,活跃课堂气氛
用故事创设情境,这可以集中学生注意力,活跃课堂气氛,使学生看到数学也是一门有趣的学科学科。例如:在讲“平面直角坐标”之前,讲一个笛卡儿发明直角坐标系的故事:数学家笛卡儿潜心研究能否用代数中的计算来代替几何中的证明时,有一天,在梦境中他用钥匙打开了数学宫殿的大门,遍地的珠之光彩夺目。他看见窗框角上有一只蜘蛛正忙着织网,顺着吐出的丝在空中飘动。一个念头闪过脑际:眼前这一条条的经线和纬线不正是全力研究的直线和曲线吗?惊醒后,灵感的阶段终于来了,那只蜘蛛的位置不是可以由它到窗框两边的距离来确定吗?蜘蛛在爬行过程中结下的网不正是说明直线和曲线可以由点的运动而产生吗?由此,笛卡儿发明了直角坐标系,解析几何诞生了;用新颖而又有趣的事例,生动而又富有感情的讲述创设情境。教师一上课,不直接板书课题,而以充沛而丰富的思想感情,用有趣而富有思考的问题,用精湛而富有魅力的谈话,吸引学生的注意,激发学生的兴趣,以产生直接的内驱力。在讲幂的运算之前,讲芝麻与太阳的质量:一粒芝麻的质量不到克,它与太阳的质量简直是不能相比的。但是,如果把一粒芝麻作为第一代播种下去,收获的芝麻作为第二代,把第二代再播种下去……,如果播种下的芝麻全部能发芽,成长,这样一直到第十三代,芝麻的质量是太阳质量的5倍!这是一个惊人的增长,学生求知的欲望。这时就可以顺势导入幂的运算。
五、利用数学活动,创设有趣情境。
数学的知识、思想和方法,必须由学生在现实的数学实践活动中理解和掌握,而不是单纯地依赖教师的讲解去获得。教学中,把问题情境活动化就是让学生投身到问题情境中去,使学生在口说、手做、耳听、眼看、脑想的过程中学习知识,增长智慧,提高能力。这对于保证学生在学习中的主体地位,对于促进学生从动作思维向具体的形象思维过渡都是十分有利的。如在分析一些应用题时,教师可让学生根据内容提示初次进行动作模仿等表演,再让学生在模仿的基础上感知每类物体的主要特征、逻辑顺序等,形成不同物体形状的表象。学生通过积极参与数学活动,经历了由观察分类到形成表象的过程,加深了对不同形状物体的认识,从而产生分析问题和解决问题的积极性和主动性。
设计类比型问题,培养学生的类比、归纳能力。利用设计的类比型问题,引导学生开展各种类比、归纳等丰富多彩的探索活动,鼓励学生进行一般与特殊、无限与有限等的类比,以达到培养和发展学生创造性思维的目的。学习有理数混合运算法则,可类比小学数学的混合运算法则;实数的混合运算法则,可以类比有理数的混合运算法则;乘方的意义.可以类比乘法的意义;二元二次方程的意义,可以类比一元二次方程的意义;分式的基本性质、运算法则,可以类比分数的基本性质及其运算法则,等等。设计问题情境的关键是选准知识的切人点,熟知学生知识的生长点。只有设计有一定梯度,有连贯性的问题情境,才能在师生互动。
总之,创设数学思维情境已成为新教学模式的一个显著特征,通过在课堂教学的各个环节,恰当的创设思维环境,能有效的激发学生学习的兴奋点,让学生真正成为课堂的教学的主角,主动参与课堂教学活动。然而创设情境不能放任随意,流于形式,只有从数学问题的本质,学生的认知规律出发,才能创设出有利于激活课堂教学的问题情境,从而实现学生学习方式的真正转变,提高教学质量。
...